Breast cancer is the second leading cause of cancer death in women in the United States, with most deaths caused by the cancer spre...
Breast cancer is the second leading cause of cancer death in women in the United States, with most deaths caused by the cancer spreading beyond the breast. In a new study, University of North Carolina Lineberger Comprehensive Cancer Center researchers have identified genetic clues that explain how breast cancer spreads, or metastasizes -- findings that may lead to better treatments or approaches to prevent its spread at the onset.
In the Journal of Clinical Investigation, the researchers published their analysis of the genetic differences they discovered in patients' primary breast cancers and their metastatic cancers. By understanding how breast cancer metastases evolve, researchers hope to better explain how they occur. This insight could reveal new approaches in the treatment and prevention of metastatic breast cancer.
"This was a very difficult study to do, but it allowed us to take a snapshot of both the primary tumor, and the tumor after it had spread, in order to trace its evolution," said the study's first author Marni Siegel, a graduate student in the UNC MD/PhD program.
Using data drawn from the UNC-Chapel Hill Breast Cancer Tumor Donation Program, the researchers analyzed DNA and the gene expression patterns in both the primary tumor and matched metastatic cancers from 16 patients. One of the major findings was that the cancer typically did not spread outside the breast as a single cell. Instead, researchers found that, based on the genetic patterns, a collection of cells most likely broke away.
"When it spreads, breast cancer often does not spread as a single cell, but rather as a collection of cells that may have different genes driving them," Siegel said. "The metastases in distant organs reflect the diversity that is seen in the original breast cancer."
ليست هناك تعليقات