Page Nav

HIDE

Breaking News:

latest

8.2 percent of our DNA is 'functional'

Only 8.2% of human DNA is likely to be doing something important – is 'functional' – say Oxford University researchers. This f...

Only 8.2% of human DNA is likely to be doing something important – is 'functional' – say Oxford University researchers.



This figure is very different from one given in 2012, when some scientists involved in the ENCODE (Encyclopedia of DNA Elements) project stated that 80% of our genome has some biochemical function.
That claim has been controversial, with many in the field arguing that the biochemical definition of 'function' was too broad – that just because an activity on DNA occurs, it does not necessarily have a consequence; for functionality you need to demonstrate that an activity matters.
To reach their figure, the Oxford University group took advantage of the ability of evolution to discern which activities matter and which do not. They identified how much of our genome has avoided accumulating changes over 100 million years of mammalian evolution – a clear indication that this DNA matters, it has some important function that needs to be retained.
'This is in large part a matter of different definitions of what is "functional" DNA,' says joint senior author Professor Chris Pointing of the MRC Functional Genomics Unit at Oxford University. 'We don't think our figure is actually too different from what you would get looking at ENCODE's bank of data using the same definition for functional DNA.
'But this isn't just an academic argument about the nebulous word "function". These definitions matter. When sequencing the genomes of patients, if our DNA was largely functional, we'd need to pay attention to every mutation. In contrast, with only 8% being functional, we have to work out the 8% of the mutations detected that might be important. From a medical point of view, this is essential to interpreting the role of human genetic variation in disease.'
The researchers Chris Rands, Stephen Meader, Chris Ponting and Gerton Lunter report their findings in the journal PLOS Genetics. They were funded by the UK Medical Research Council and the Wellcome Trust.
The researchers used a computational approach to compare the complete DNA sequences of various mammals, from mice, guinea pigs and rabbits to dogs, horses and humans.
Dr Gerton Lunter from the Wellcome Trust Centre for Human Genetics at Oxford University, the other joint senior author, explained: 'Throughout the evolution of these species from their common ancestors, mutations arise in the DNA and natural selection counteracts these changes to keep useful DNA sequences intact.'

The scientists' idea was to look at where insertions and deletions of chunks of DNA appeared in the mammals' genomes. These could be expected to fall approximately randomly in the sequence – except where natural selection was acting to preserve functional DNA, where insertions and deletions would then lie further apart.
'We found that 8.2% of our  is functional,' says Dr Lunter. 'We cannot tell where every bit of the 8.2% of functional DNA is in our genomes, but our approach is largely free from assumptions or hypotheses. For example, it is not dependent on what we know about the genome or what particular experiments are used to identify biological function.'
The rest of our genome is leftover evolutionary material, parts of the genome that have undergone losses or gains in the DNA code – often called 'junk' DNA.
READ MORE >>

ليست هناك تعليقات