The kick-start came from the U.S. Department of Defense, which wanted a quick and effective way to develop and test drugs and vaccines against biological and chemical weapons. So federal agencies funded various projects to develop chips representing all the major organ systems. Each organ-on-a-chip hosts real human tissue kept alive by a synthetic circulatory system. Join enough of them together, and you’ve got a high-tech stand-in for the human body.
Researchers at Harvard’s Wyss Institute have 12 different organ chips in development, representing everything from lungs to skin. They’re working to combine 10 of them that will operate as a system for at least four weeks in an instrument called the Interrogator (named after its ability to analyze, or interrogate, how they work together). Don Ingber, the institute’s director, says he and his colleagues already have succeeded in coupling two different pairs of chips — lung-liver and lung-heart — a key step toward the ultimate goal.
“These platforms are designed to be as close to human as you can get, but enable experimental manipulation,” says D. Lansing Taylor, director of the University of Pittsburgh Drug Discovery Institute. Taylor is growing miniature livers that will be used to help re-create the body’s main system for drug absorption and metabolism.
Human bodies-on-chips would have applications far beyond drug development. For instance, toxicologist Thomas Hartung of Johns Hopkins hopes that connecting his minibrains to other micro-organs will show how toxins affect neural development and how they’re processed in the body. Conducting such brain experiments on animals is expensive and time consuming — and on people, it’s impossible.
Enter the human bodies-on-chips.
No comments